
Kernwissen Mathematik

Sekundarstufe I und II

Arithmetik

Probleme lösen durch Rechnen mit Zahlen (mit und ohne TR)

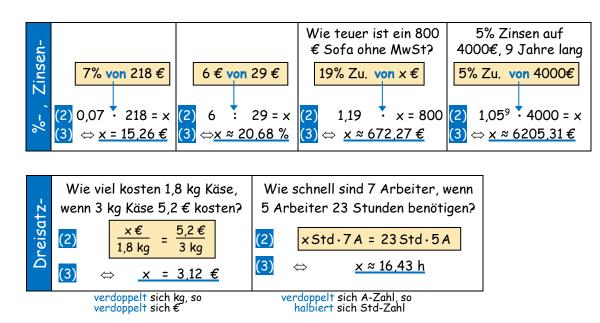
	+	_	•	•	be- stimme
negat. Zahlen	(-2)+(-3)=	(-7)-(-4)=	(-53) · (-2) =	6: (-2) =	
	Kl.entf., Z	ahlenstrahl	ohne Vorzeic	hen rechnen,	
Bruchzahlen	$\frac{2}{3} + \frac{5}{4} =$	$3\frac{2}{5} - \frac{3}{4} =$	$-\frac{15}{4}\cdot\frac{2}{5}=$	$\frac{6}{5}:\frac{3}{10}=$	4 7
	Haupt	nenner	Z•Z, N•N	 Kehrwert 	
Potenzzahlen	$2^3+2^4=$ $2^3+6^3=$	$5^3-5^2 = 2^3-4^3 =$	$8^4 \cdot 8^2 = 5^4 \cdot 2^4 = (2^3)^4 = 6^4 \cdot 2^4 = (2^3)^4 $	4 ⁰ :4 ¹ = 9 ⁷ :3 ⁷ =	3 ⁻² 4 ^{3/2}
Wurzelzahlen	$\sqrt{2} + \sqrt{3} =$	$\sqrt{7} - \sqrt{3} =$	√3·√12 =	√98:√2 =	³ √40
		w X	zusammenzi		
Logarithmus-Z	log₂3 + log₂4 = 7· log₅2 =		log ₂ 3 · log ₂ 3 :	log₂100	
	zusammenz	iehbar L1-L2			
Sinus-Zahlen		sin20°	° + sin30°=	sin 40°	

• Rechenzeichen und a) müssen durch b) + Vorzeichen kör c) +(-), -(-) Klamme • Potenz- vor Punkt 6-3 ² ·5 = (-3 ²); -3 ² =	Klamme nnen we rn könn - vor S	rn ge ggela: en au trich	tren ssen fgel	wer öst u	rden werd	: len:	(+4 7+(-	4) - ·2)-(= (+1)		• Ru • Be • Ur	i nde d i griff nkehr	auf H e: Pr runge	under imzah n: $\sqrt{1}$	rtstel I, Dif 3 ² =	: 3,4 fere ; (√1;	5 ² / ₃ 749 πz, Pr (3) ² = (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	odukt	0,2 t, Qu ^{P82,5} =	951 ≈ otien _; lo	ະ t, An¹ og₂2³	teil
• Wichtige Brüche:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{1}$	1/2	1/3	1 4	1 5	1 6	1 7	1 8	1 9	1 10	1	0,1	0,5	0,2	0	0,3	0,125	0,16	∞	0,14	0,1	0,25

Algebra I Probleme lösen durch Rechnen mit Variablen

(Lineare Gleichungen)

Frank und seine Mutter sind zusammen 48 Jahre alt. Die Mutter ist 3-mal so alt wie Frank. x: Alter von Frank $x + 3 \cdot x = 48$


 \Leftrightarrow 4x = 48

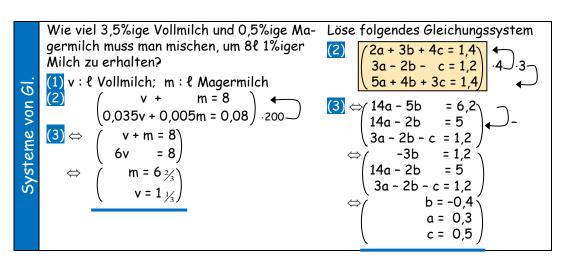
Dividiert man 15 durch eine natürliche Zahl und dividiert man 12 durch deren Nachfolger, so ist die Differenz dieser Quotienten gleich 30 durch Produkt von Zahl u. Nachfolger.

(1)
$$x : \text{ die natürl. Zahl}$$

(2) $\frac{15}{x} - \frac{12}{x+1} = \frac{30}{x \cdot (x+1)}$ | $\cdot x \cdot (x+1)$
(3) $\Leftrightarrow 15(x+1) - 12x = 30$
 $\Leftrightarrow x = 5$

Standardlösungsverfahren

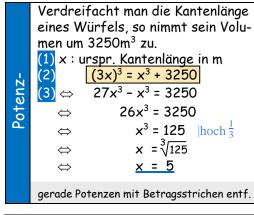
- (1) Welche Zahl ges.? x : ...
- (2) Gleichung aufstellen (3) x allein stellen
- Brüche entfernen
- Klammern entfernen
- Gleiches zusammenfassen

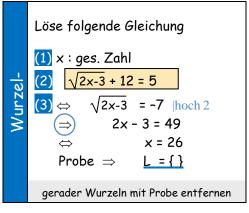

Algebra II

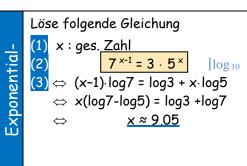
Probleme lösen durch Rechnen mit Variablen

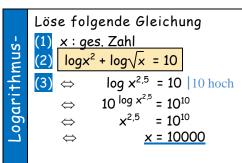
(Quadratische Gl. u. Systeme von Gleichungen)

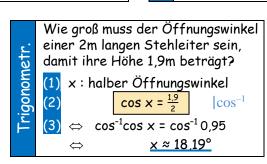
```
Ein Swimmingpool 30m \times 20m soll von einem Weg umgeben wer-
den. Wie breit muss der Weg sein, damit seine Fläche insgesamt
360m² beträgt?
(1) x : Wegbreite in m
                                                (1) x : Wegbreite in m
                                                (2) (30+2x)\cdot 2x+20x\cdot 2 = 360
    (30+2x)\cdot x\cdot 2+20\cdot x\cdot 2=360
     \Leftrightarrow 4x<sup>2</sup> + 100x = 360
                                                (3) \Leftrightarrow 4x^2 + 100x - 360 = 0
            x^2 + 25x = 90 |+12,52
                                                          -100 \pm \sqrt{100^2 - 4.4.(-360)}
          (x+12,5)^2 = 246,25
            |x+12,5| = \sqrt{246,25}
                                                 \Leftrightarrow x \approx 3.19 oder x \approx -28.19
          \pm(x+12,5) = \sqrt{246,25}
           x + 12,5 = \pm \sqrt{246,25}
    \Leftrightarrow x \approx 3,19 oder x \approx -28,19
```


```
Klammern setzen und entfernen
(a+b)^2 = (a-b)^2 = (a+b)(a-b) = (a+b)(c+d) = 4-(a-2)(a-3) = -3(x\cdot5) = 12a^2-18a = 9x^2-30x+25 = 8
Betragsstriche setzen und entfernen
(x-1)^2 < 9 \Leftrightarrow |x-1| < 3 \Leftrightarrow \pm (x-1) < 3
acb-Formel
ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
```




Algebra III


Probleme lösen durch Rechnen mit Variablen


(weitere Algebragleichungen)


```
P1 a^r \cdot a^s = a^{r+s}

P2 a^r \cdot b^r = (a \cdot b)^r

P3 (a^r)^s = a^{r \cdot s}

P4 a^{-r} = \frac{1}{a^r}

P5 a^{r/s} = \sqrt[8]{a^r}

L1 \log_b a + \log_b c = \log_b (a \cdot c)

L2 r \cdot \log_b a = \log_b a^r

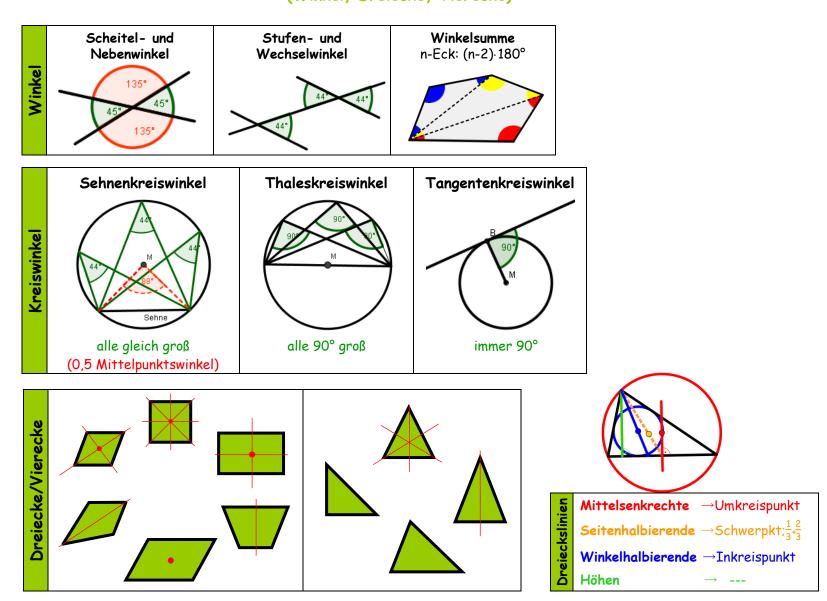
L3 \log_b a = \frac{\log_c a}{\log_c b}

\log_5 := \log_{10} 5; \ln 5 := \log_e 5

\log_2 2^x = x \cdot \log_2 2 = x

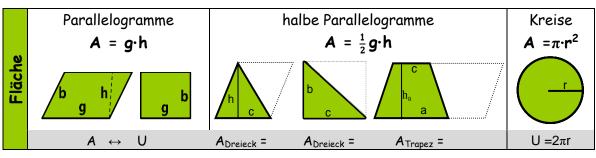
2^{\log_2 3x} = 3x

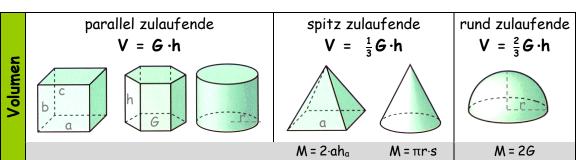
\sin_1 0^r \neq \sin_1 1

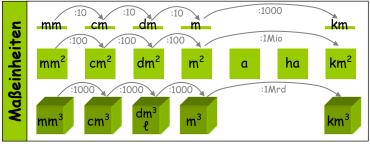

(5^2)^3 \neq 5^{2^3}
```

Geometrie I

Vermessen von Gegenständen

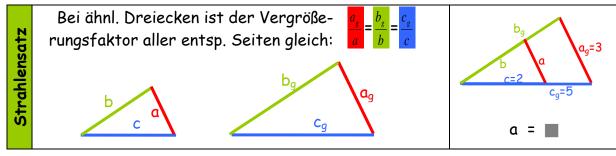

(Winkel, Dreiecke, Vierecke)

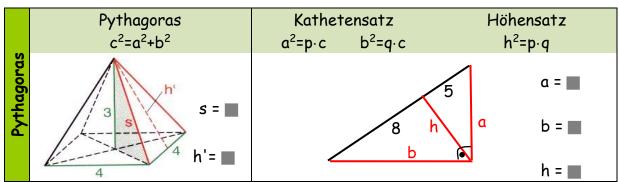

GeometrieII

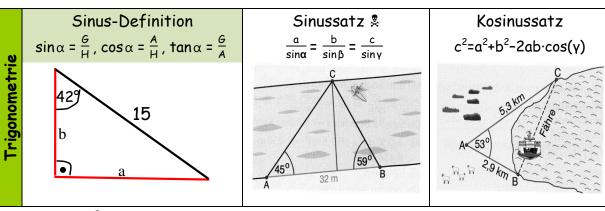

Vermessen von Gegenständen '

(Fläche, Volumen)

1 kWh = 3,6 MJ [MWs] [MNm]; (tägl. Energiebedarf: 3 kWh ≈ 10 MJ)


	1	10 ³	10-3	Kilo	milli
	2	10 ⁶	10-6	Mega	µkro
S	3	10 ⁹	10 ⁻⁹	G iga	nano
<u>.</u>	4	1012	10-12	Tera	pikto
רמו	5	10 ¹⁵	10 ⁻¹⁵	Peta	femto
Ы	6	10 ¹⁸	10 ⁻¹⁸	Exa	atto
	7	10 ²¹	10-21	Zetta	zepto
	8	10 ²⁴	10-24	Yotta	vokto

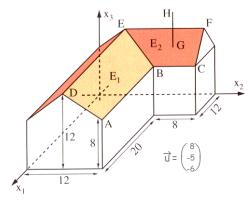

Geometrie III


Vermessen von Gegenständen

(mit Dreiecken)

🏅 Achtung, damit nicht den Winkel gegenüber der größeren Seite berechnen (sSww).

(mit Punktkoordinaten)

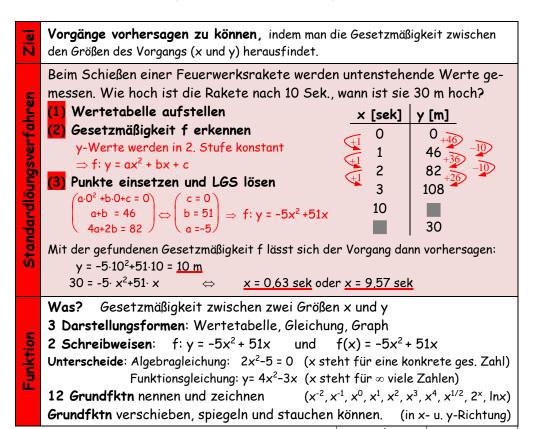

Geometrie IV

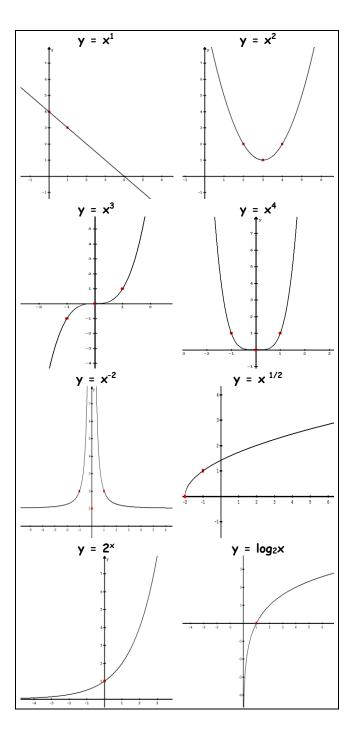
Vermessen von Gegenständen

 $\overrightarrow{OF} = \overrightarrow{OC} + \begin{pmatrix} -6 \\ 0 \end{pmatrix} =$ ⇒ F=(6|20|12) Punkt OP über bekannten Umweg bestimmen \overrightarrow{AB} über bek. Umweg best.: $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ A(32|12|8); $B(12|12|8) \Rightarrow \overrightarrow{AB} = \begin{pmatrix} -20 \\ 0 \end{pmatrix}$; $|\overrightarrow{AB}| = \sqrt{20^2 + 0^2 + 0^2}$ Länge | \overrightarrow{AB} | mit Pythagoras best. (12) (-6) (8) (0)

Ger	rade	$g_{A,B}$: $\overrightarrow{X} = \overrightarrow{OA} + t \cdot \overrightarrow{AB}$	$g_{B,E}: \overrightarrow{x} = \begin{pmatrix} 12\\12\\8 \end{pmatrix} + t \begin{pmatrix} -6\\-6\\4 \end{pmatrix} \qquad g_{HG}: \overrightarrow{x} = \begin{pmatrix} 8\\14\\16 \end{pmatrix} + t \begin{pmatrix} 0\\0\\-1 \end{pmatrix}$
Ebe	ene	$E_{A,B,C}$: $\overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} + t \cdot \overrightarrow{AC}$; Parameterform	$E_1: \overrightarrow{x} = \begin{pmatrix} 32 \\ 12 \\ 8 \end{pmatrix} + s \begin{pmatrix} -20 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ -6 \\ 4 \end{pmatrix} : \begin{pmatrix} 0 \\ 80 \\ 120 \end{pmatrix} \Rightarrow E_1: 2x_2 + 3x_3 - 48 = 0$
		$: [\overrightarrow{OX} - \overrightarrow{OA}] \circ \overrightarrow{n} = 0$ Normalenform	$E_2: \overrightarrow{x} = \begin{pmatrix} 12 \\ 12 \end{pmatrix} + s \begin{pmatrix} 0 \\ 8 \end{pmatrix} + t \begin{pmatrix} -6 \\ -6 \end{pmatrix}; \begin{pmatrix} 32 \\ 0 \end{pmatrix} \Rightarrow E_2: 2x_1 + 3x_3 - 48 = 0$
		$: n_1 x_1 + n_2 x_2 + n_2 x_3 = \overrightarrow{OA} \circ \overrightarrow{n} \qquad \text{Koordinatenform}$	E_2 : $X = \begin{bmatrix} 12 \\ 8 \end{bmatrix} + \underbrace{5} \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \underbrace{1} \begin{bmatrix} -6 \\ 4 \end{bmatrix}$; $\begin{bmatrix} 0 \\ 48 \end{bmatrix} \Rightarrow E_2$: $2X_1 + 3X_3 - 48 = 0$
L _{g,F}	P L E,P	Punktprobe	$L_{E_{1,(8 7,5 11)}}$: 2·7,5 + 3·11 - 48 = 0 \Rightarrow (8 7,5 11) \in E ₁
		v	$L_{AB,HG}$: \blacksquare $\overrightarrow{\lor}$ \forall $\overrightarrow{\lor}$ \Rightarrow $g \nmid g^*$ oder $g \cdot \backslash g^*$
bur	L _{g,g*}	$\overrightarrow{v} \parallel \overrightarrow{v}^* ?$ $g = g^* g \parallel g^* S() g \cdot \setminus g^*$	$ \begin{array}{c} $
ziehu			L_{e_1,e_2} : $\overrightarrow{n}_1 \nparallel \overrightarrow{n}_2 \qquad \Rightarrow E_1 \rlap{/} E_2$
Lagebeziehung	L _{E,E*}	$\overrightarrow{n} \parallel \overrightarrow{n^*}$? $A \in E^*$? \overrightarrow{g} gleichsetzen \overrightarrow{g} : \overrightarrow{x} =	
ı	L _{E,g} *	$\overrightarrow{n} \circ \overrightarrow{v} = 0$? $A^* \in E$? $g \in E^*$ $g \parallel E^*$ $g \parallel E^*$ $g \parallel E^*$ $g \parallel E^*$	$L_{E2,H6}: \overrightarrow{r} \circ \overrightarrow{v}^* \neq 0 \qquad \Rightarrow g_{H6} \not I E_2$ $= 2 \cdot 8 + 3 \cdot (16 - r) - 48 = 0 \Leftrightarrow r = 5,33 \Rightarrow G(8 14 10,66)$
Wii	nkel	$\alpha_{g,g^*} = \cos^{-1} \frac{ \overrightarrow{v} \circ \overrightarrow{v^*} }{ \overrightarrow{v} \cdot \overrightarrow{v^*} } \alpha_{E,g^*} = 90^{\circ} - \cos^{-1} \frac{ \overrightarrow{v} \circ \overrightarrow{v^*} }{ \overrightarrow{v} \cdot \overrightarrow{v^*} }$	$\alpha_{\text{E1,E2}}$ = 46,19° $\alpha_{\text{BE,BA}}$ = 129,76° $\alpha_{\text{BE,Boden}}$ = 25,24°
Flä	iche	$\mathbf{A}_{ABC} = \overrightarrow{AB} \times \overrightarrow{AC} $ Parallelogrammfläche	$A_{ABDE} = \frac{1}{2} (\vec{AB} + \vec{DE}) \times \vec{AD} = 187,49 \text{ m}^2$
Volu	umen	$V_{ABCD} = \overrightarrow{AB} \times \overrightarrow{AC} \circ \overrightarrow{AD} $ Spatvolumen	$V_{\text{Endgeschoss}} = I \begin{pmatrix} 32 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 12 \\ 0 \end{pmatrix} \circ \begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix} = 3.072 \text{ m}^3$
		, ĀP × v , ĀP∘ n	$d_{BE,H}$ = 7,87 m $d_{E2,H}$ = 4,44 m
Abs	tand	$d_{g,P} = \frac{ \overrightarrow{AP} \overset{\times}{\nabla} \overrightarrow{V} }{ \overrightarrow{V} } \qquad d_{E,P} = \frac{ \overrightarrow{AP} \cdot \overrightarrow{n} }{ \overrightarrow{n} }$	$d_{AD,CF} = 4,24m$ 2. Formel, da $g_{AD} \cdot \setminus g_{CD}$; $\overrightarrow{n}_{AD,CF} = \begin{pmatrix} 6 \\ -6 \\ -6 \end{pmatrix}$

Kann man H(8|14|16) von P(41|-7|1) aus sehen? Bei Sonneneinstrahlung aus Richtung u wirft die Antenne GH einen Schatten, der BE trifft. Wo?


	rechnerisch	geom. Bedeutung
+	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 6 \end{pmatrix}$	hängt Vektor an
-	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix}$	hängt Gegenvektor an
•	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot 3 = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$	verlängert 3-fach
:	$\begin{pmatrix} 4 \\ 6 \\ -2 \end{pmatrix} : 2 = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$	→→ halbiert
0	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \circ \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} = 1$	liefert Zwischenwinkel
×	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} 18 \\ -3 \\ -4 \end{pmatrix}$	liefert n und Fläche
11	$\left \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix} \right = \sqrt{26}$	Länge Länge


Analysis I

Vorhersagen von Vorgängen

(mit Grundfunktionen)

Analysis II Vorhersagen von Vorgängen

(mit zusammengesetzten Funktionen)

Graph gesucht	$f(x) = \frac{x^3}{6x^2 - 54}$ $= \frac{x^3}{6(x+3)(x-3)}$	$f'(x) = \frac{x^{2}(x^{2}-27)}{6(x^{2}-9)^{2}} \qquad f''(x) = \frac{3x(x^{2}+27)}{(x^{2}-9)^{3}}$ (5) $f(-x) = -f(x) \Rightarrow \text{punktsymm.}$ (R) $\blacksquare \lim_{x \to -\infty} y = -\infty$; $\lim_{x \to \infty} y = \infty$ schiefe Asymptote mit $y = x/6$ $\blacksquare 6(x+3)(x-3) = 0 \Leftrightarrow x = \pm 3 \qquad \text{ungerade Lücken}$ (N) $f(x) = 0 \Leftrightarrow x = 0 \Rightarrow N(0 0)$ 3-fache Nullstelle (H) $f'(x) = 0 \Leftrightarrow x = -\sqrt{27} \text{ od. } x = 0 \text{ od. } x = \sqrt{27}$ $\Rightarrow H(-\sqrt{27} -\sqrt{27/16}) \qquad 5(0 0) \qquad T(\sqrt{27} \sqrt{27/16})$ $+/- \qquad -/- \qquad -/+ \qquad VZW$ (W) $f''(x) = 0 \Leftrightarrow x = 0 \Rightarrow -/+W(0 0) \qquad da -/+VZW$
eichung	Bestimme die ganzrationale Funktion 4ten Grades, deren Graph symmetrisch zur y-Achse ist und in $P(2 1)$ eine Wendetangente mit der Steigung $-\frac{4}{3}$ hat.	$f(x) = ax^{4} + cx^{2} + e$ $f'(x) = 4ax^{3} + 2cx$ $f''(x) = 12ax^{2} + 2c$ $\begin{pmatrix} f(2) = 1 \\ f'(2) = -\frac{4}{3} \\ f''(2) = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 16a + 4c + e = 1 \\ 32a + 4c & = -\frac{4}{3} \\ 48a + 2c & = 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} a = \frac{1}{48} \\ c = -\frac{1}{2} \\ e = \frac{8}{3} \end{pmatrix}$ $\Rightarrow f(x) = \frac{1}{48}x^{4} - \frac{1}{2}x^{2} + \frac{8}{3}$
Fläche gesucht	 Stammfkt F gesucht orient. Fläche ∫ gesucht absolute Fläche A gesucht zwischen f und x-Achse zwischen f und g von 0 bis ∞ Volumen V gesucht 	$F(x) = \int (7x+1)^4 dx = \frac{1}{7} \cdot \int 7 \cdot (7x+1)^4 dx = \frac{1}{7} \left[\frac{1}{5} (7x+1)^5 + c \right]$ $\int_0^4 \frac{1}{\sqrt{3x+2}} dx = \frac{1}{3} \left[2\sqrt{3x+2} \right]_0^4 = \frac{2}{3} (\sqrt{14} \cdot \sqrt{2})) \approx 1,55 \text{ LE}^2$ $A = \left \int_{-1}^0 (0.5x^3 - 2x) dx \right + \left \int_0^2 (0.5x^3 - 2x) dx \right + \left \int_2^{2.5} (0.5x^3 - 2x) dx \right \approx 3,51 \text{ LE}^2$ $A = \left \int_{-1}^{n_1} h dx \right + \left \int_{n_1}^3 h dx \right = \dots \qquad \text{mit } h := f-g$ $A = \int_0^\infty 2e^{-x} dx = \left[-2e^{-x} \right]_0^\infty = \ -2e^{-\infty} + 2 \ = 2 \text{ LE}^2$ $V = \pi \int_0^1 f(x)^2 dx = \pi \int_0^1 (3 \cdot e^{2x})^2 dx = \pi \int_0^1 9 \cdot e^{4x} dx = \pi \left[\frac{9}{4} \cdot e^{4x} \right]_0^1 \approx 378,86 \text{ LE}^3$

F	f	f'
$\frac{1}{r+1} \times r+1 + c$	× r	r·x ^{r-1}
e×+c	e×	e×
x·ln x - x + c	ln x	1 ×
- cos x + c	sin x	cos x
k·G	k∙g	k·g'
<i>G</i> ± H	$g\pm h$	g' ± h'
	g(h) g(h)·h'	g'(h)·h'
G·h -∫G·hʻ	g∙h	gʻ·h + g·hʻ
$\int f(z) dz$	<u>g</u> h	g'h-gh' h²
x(†)	v(†)	a(†)
E(†)	P(†)	
E(x) Gesamtmenge	F(x)	Änderungsrate

- Nullstellen bestimmen (4) Nullstellentyp: gerade, ungerade
- Lückentyp: gerade, ungerade, Loch
- Stelle \leftrightarrow Wert; $x^{-1} \leftrightarrow f^{-1}$; Umkehrfkt
- Tangentengleichung u. Ortskurve Gebrochenrat. Fkt
- 3 Schreibweisen und ihre Vorteile
- Rand- u. Lückenasymptoten best.

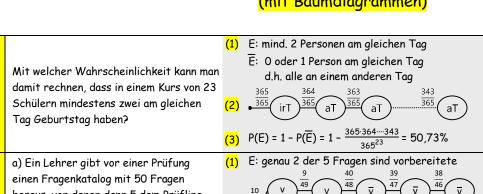
```
gesuchte Größe x: Radius [m]
Eine 400-m-Laufbahn in einem Stadion be-
                                                               zu optim. Größe A(x) = 2x \cdot b + 400 = 2b - 2\pi x
steht aus 2 parallelen Strecken und 2 ange-
                                                                                           = 400x-2\pi x^2
setzten Halbkreisen. Für welchen Radius der
                                                               A'(x) = 400-4\pi x
Halbkreise wird die rechteckige Spielfläche
                                                               A'(x) = 0 \implies x = 100/\pi \approx 31.8
maximal?
                                                               \Rightarrow H(31,8|3183)
                                                                                             da f' dort ein +/- VZW hat
                                       f'(x) = 2 \cdot (e^{2x} - ke^x)
                                                                              f''(x) = 2 \cdot (2e^{2x} - ke^{x})
                                 (5) f_k(-x) \neq -f_k(x) bzw. f_k(x)
                                                                              \Rightarrow keine Symmetrie
                                 (R) \lim_{x \to \infty} \lim_{x \to \infty} y = \infty \lim_{x \to -\infty} y = t^2
                                                                              ■ keine Def-Lücke
f_k(x) = (k-e^x)^2 : k > 0
                                 (N) f(x)=0 \Leftrightarrow x = ln(k) \Rightarrow N(ln(k)|0)
                                 (H) f'(x)=0 \Leftrightarrow x = \ln(k) \Rightarrow T(\ln(k)|0)
                                                                                                  da f' dort -/+ VZW hat
                                 (W) f''(x)=0 \Leftrightarrow x=\ln(k/2) \Rightarrow r \cdot W(\ln(k/2)|k^2/4) da f'' dort -/+ VZW hat
                                       Ortskurve durch W: x = \ln k/2 \Leftrightarrow k=2e^x \Rightarrow y = (2e^x)^2/4 = e^{2x}
                                             If f(x_m) \cdot f(x_r) \leq 0
                                                                                    ⇒ Nst rechtes Intervall
Graph ges. Intervallhalb. Verfahen
                                                               \leq f(x<sub>m</sub>+0.0001) \Rightarrow Hst rechtes Intervall
                                             If f(x_m)
Gleichung ges.
                                             Komplizierte Fkt f(x) durch ganzrat. Fkt annähern
                        Taylor-Verfahren
Fläche ges.
                                             Fläche in z.B. 20 Streifen zerlegen (\Delta x=(b-a)/20) und
                     Simpson-Verfahren
                                             dann je 2 Streifen durch Parabelfläche annähern \Rightarrow
                                                \int_{0}^{\infty} f(x) dx \approx \frac{\Delta x}{3} [(y_0 + y_{20}) + 2(y_2 + y_4 + ... y_{18}) + 4(y_1 + y_3 + ... y_{19})]
```

e^{x} und $\ln x$ Funktion	
 Basentransformation I 	oei a× und logь×
• $\lim_{x\to\infty} x^n \cdot e^{-x} = 0$ e^x "stär	ker" x" "stärker" ln x
Trigonometr. Fkt	
• $f(x) = a \cdot sin(b(x+c)) + d$	a o Amplitude
	$b \cdot Periode = 1 \cdot 2\pi$
Sprung Knick Kriin	nmunasruck

4 Tricks beim Suchen einer Stammfk

f integrierbar, stetig, diffbar, umkehrbar

4 I ricks beim Suc	nen einer Stammtkt
Schreibweise ändern	Summenschreibweise
Kettenregel rückwärts	$\int g(h) \cdot h' = G(h)$
Produktregel rückwärts	$\int g \cdot h = G \cdot h - \int G \cdot h'$
Substitution x ersetzen durch z	$\int_{a}^{b} f(x) dx = \int_{b^{-1}(a)}^{b^{-1}(b)} f(z) dz$


Matrizen

(tabellenartige Zahlenfelder, die in allen Teilgebieten eingesetzt werden können)

	A + B elementweise	$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 6 & 9 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 9 & 13 \end{pmatrix}$ in Excel: {=A+B}
letik	A ■ B Zeilen-·Spaltenvektor	$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 6 & -1 \\ 3 & 2 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 39 & -12 \end{pmatrix} $ {=MMULT(A;B)}
Arithmetik	A −1 Gauß-Jordan	$\begin{pmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 & 1 & 0 \\ 3 & 4 & 1 & 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & -3 & 2 & 0 \\ 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix} $ {=MINV(A)}
	E Einheitsmatrix	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Algebra	Löse das LGS $\begin{pmatrix} x_1 + x_2 + x_3 = 0 \\ 4 x_1 + 2x_2 + x_3 = 1 \\ 9x_1 + 3x_2 + x_3 = 3 \end{pmatrix}$	$\Leftrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$ $A^{-1} \cdot A \qquad \cdot \qquad \vec{x} = A^{-1} \cdot \vec{d}$ $\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0.5 & -1 & 0.5 \\ -2.5 & 4 & -1.5 \\ 3 & -3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.5 \\ 0 \end{pmatrix}$
Geometrie	Wie bestimmt man den Bildpunkte P' bei einer a) Verschiebung um (4 3 6)? b) Zentr. Streckung von (3 2 3) aus um 2 c) Drehung um (3 2 3) zur x1x2-Ebene d) Spiegelung an x1x2-Ebene	$\overrightarrow{OP'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \overrightarrow{OP} + \begin{pmatrix} 4 \\ 3 \\ 6 \end{pmatrix}$ $\overrightarrow{OP'} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \left(\overrightarrow{OP} - \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \right) + \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$ $\overrightarrow{OP'} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \left(\overrightarrow{OP} - \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \right) + \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$
Analysis	Eine Insektenpopulation umfasst zu Beginn 120 Eier, 40 Larven und 24 Insekten. Pro Monat wer- den aus 25% der Eier Larven, aus 50% der Larven Insekten und jedes Insekt legt, kurz vor seinem Tod, 8 Eier. a) Bestimmen Sie die Fkt-Gleichung der Populationsentwicklung. b) Wann würde die Po- pulation aussterben?	Eier $\vec{f}(x) = \begin{pmatrix} 0 & 0 & 8 \\ 0.25 & 0 & 0 \\ 0 & 0.5 & 0 \end{pmatrix}^{x} \cdot \begin{pmatrix} 120 \\ 40 \\ 24 \end{pmatrix}$ Larven 0.50 O 1 2 3 4 5 6 7 8 9 10 11 12 120 192 160 120 192 160 120 192 160 120 192 160 120 192 160 120 192 160 120 192 160 120 192 160 120 192 160 120 192 150 120 192
Stochastik	Eine Münze wird so lange geworfen bis das Muster zzz (gewonnen) oder ww (verloren) auf- tritt. Wie groß ist die Wahrscheinlichkeit, die- ses Spiel zu gewinnen?	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

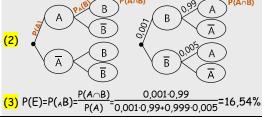
Stochastik I

Vorhersagen von Wkn (mit Baumdiagrammen)

heraus, von denen dann 5 dem Prüfling vorgelegt werden. Hans bereitet sich Mammutbäume auf 10 der Fragen vor. Mit welcher Wk erhält er genau 2 vorbereitete Fragen?

einfache

b) Eine Münze wird so lange geworfen, bis das Muster zzz (gewonnen) oder ww (verloren) eintritt. Wie groß ist die Wk bei diesem Spiel zu gewinnen? Nach wie vielen Würfen ist das Spiel mit 95%iger Sicherheit beendet?


Die Alarmanlage eines Geschäftes gibt bei einem Einbruch mit der Wk 0,99 Alarm. Aber auch ohne Einbruch gibt sie mit der Wk 0,005 (falschen) Alarm. Die Einbruchswk in der Nacht beträgt 0,001. Wie groß ist die Wk, dass wenn der Alarm ausgelöst wird, tatsächlich ein Einbruch stattfindet?

P(E) = $(\frac{10}{50}, \frac{9}{49}, \frac{40}{48}, \frac{39}{47}, \frac{38}{46}) \cdot \frac{5!}{2! \cdot 3!} = 20,98\%$

(1) E: Spielgewinn, d.h. zzz vor ww

(3) $\overrightarrow{P}(E) \approx M^{100} \cdot \overrightarrow{v_0} = (0|0|0|0|0,3|0,7)^T$ (1) E: AB, d.h. ein Einbruch B findet statt unter der

Bedingung A, dass der Alarm ausgelöst wurde

Standardlösungsverfahren

- (Was soll passieren? evtl. \overline{E}) E: (1) (E schrittweise pass. lassen) Baum
- (2)(mit Pfadregeln bestimm)
 - P(E) = P(E1) Anzahl Pfade
 - $P(AB) = P(A \cap B)/P(A)$ • $P(E) = Bin_{n, p}(X \le x)$

 $Zufallsvorgang \leftrightarrow det. Vorgang$

Ausgang, Ereignis, E

Baum (Wurzel, Knoten, Ast, Pfad) bedingter Bäume, $P_A(B)$, $P(A \cap B)$, P(A)

(8+4)! 3!-2!

wann: $Bin_{20;0.8}(X=14) \leftrightarrow Bin_{20;0.8}(X\leq 14)$ wann: Bin(x), Hyp(x), Nor(x) $p_{spek} \leftrightarrow p_0\,;$ Hauptstreubereich HSB

Aufbereitung einer Daten-Urliste

als Rangliste (Spannweite, Median) als Häufigkeitsliste (Modal-, Mittel-, Streu-) als Säulendiagramm (Histogramm, Boxplot)

 \overline{x} , $s \leftrightarrow \mu$, σ ; $\sum x_i \cdot p_i$; $\sqrt{\sum (x_i - \mu)^2 \cdot p_i}$

Stochastik II

Vorhersagen von Wkn (mit Funktionen1)

Simonial Raime	Ausschuse Rostimmo dia W/k	(1) (2)	E: Man erhält höchstens 580 defekte. $0.1 d 0.1 d Bin(x)$ verwendbar $n = 6000 p = 0.1$ $E: X 580$ $P(X 580) = Bin_{6000; 0,1}(X 580) = 20,12\%$ $[\approx Nor_{600; 23,24}(X 580,5)]$
hypergeom	Mit welcher Wk erhält man beim Skatspielen (10 von 32 Karten) höchstens 2 Buben?	(1) (2)	E: Ich erhalte 0, 1 oder 2 Buben. $ \frac{4}{32} $ B $ \frac{3}{1} $ B $ \frac{4}{31} $ B $ \frac{3}{1} $ B $ \frac{3}$
C+c+ion Kno+onmon+o		(1)	E: Das gegriffene Ei wiegt 48g-54g Nor(x) verwendbar $\mu = 50; \ \sigma = 5$ $\Xi : 48 \le X \le 54$ P(E) = Nor _{50; 5} (48 \le X \le 54) = Nor _{50; 5} (X \le 54) - Nor _{50; 5} (X \le 48) = 44,35%

			(1)	E: Man erhält mind. 2-mal eine "6"
men	n gesucht	Wie oft muss man einen gerechten Würfel mind. werfen, um mit einer Wk von mind. 95% mind. 2- mal eine "6" zu erhalten?	(3)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<mark>eme bei binomialen Bäumen</mark>	p gesucht (schätzen)	Man hat keinen Anhaltspunkt, wie groß die Trefferwahrscheinlichkeit p für eine "6" bei einem verbeulten Würfel ist. Deshalb wirft man ihn 50-mal und erhält 32-mal eine "6". Schätze p mit einem 95% Vertrauensintervall.	(1) (2) (3)	E: Man erhält 32-mal eine "6" $\begin{array}{ccccccccccccccccccccccccccccccccccc$
Umkehrprobleme	x gesucht (testen)	Max vermutet, dass er übersinnliche Kräfte hat und mit einer Wünschelrute unterirdisches Wasser erkennen kann. Bei 44 Versuchen stimmen seine Angaben in 29 Fällen. Ist damit seine Vermutung bestätigt? (Signifikanzniveau 5%)?	(1) (2) (3)	E: Man erhält 29 Treffer bei 44 Versuchen

 $^{^{1}}$ Die Funktionswerte von Bin(x), Hyp(x), Nor(x) lassen sich leicht ermitteln mit dem Excelblatt stochastik.xls unter www.stefanbartz.de